Classification of Vehicles

Vehicle์˜ ์ข…๋ฅ˜๋Š” ์—ฌ๋Ÿฌ ๊ฐœ๊ฐ€ ์žˆ์—ˆ๋‹ค
๋‚˜๋Š” vehicleํ•˜๋ฉด ์ž๋™์ฐจ์ธ์ค„ ์•Œ์•˜์ง€๋งŒ.. ใ… ใ… 


Robot Locomotion

์ •์˜: ๋ชจ๋ฐ”์ผ ๋กœ๋ด‡์ด ํ•œ ์žฅ์†Œ์—์„œ ๋‹ค๋ฅธ ์žฅ์†Œ๋กœ ์›€์ง์ด๊ธฐ ์œ„ํ•ด์„œ ์‚ฌ์šฉ๋˜์–ด์ง€๋Š” Mechanism ์ด๋‚˜ Method๋ฅผ ๋œปํ•จ

Bio-inspired locomotion : walking, jumping, running, swimming, flying


Motion์— ๋Œ€ํ•œ ๊ธฐ๋ณธ Concepts

Kinematics : motion(ํž˜, ๊ฐ€์†๋„)์˜ ํ‘œํ˜„์„ ์ œ์™ธํ•œ ์ˆ˜ํ•™์ ์ธ ํ‘œํ˜„
Kinetics : motion(ํž˜, ๊ฐ€์†๋„)๋ฅผ ๊ณ ๋ คํ•œ ๊ด€๊ณ„
Dynamics : Kinematics + Kinetics

img


Motion์„ ์–ด๋–ป๊ฒŒ ์ •์˜ํ•˜๋Š”๊ฐ€?

object์˜ motion์„ ์ •๋Ÿ‰ํ™”ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” Reference frame์ด๋ž€ ๊ฒƒ์ด ํ•„์š”!
reference frame์ด๋ž€ origin ๋˜๋Š” coordinate system ์œผ๋กœ๋ถ€ํ„ฐ ์ •์˜๋จ


Coordinate Systems

3๊ฐ€์ง€๊ฐ€ ์กด์žฌ


Global & Local frame

  1. Global frame
    • Earth-centered inertial frame(=inertial frame)
    • ECI frame, ์ง€๊ตฌ ์งˆ๋Ÿ‰ ์ค‘์‹ฌ์ด ์›์  ๊ด€์„ฑ ๊ณต๊ฐ„์—์„œ ํšŒ์ „ X
    • ๋‰ดํ„ด์˜ ๋ฒ•์น™์ด ์™„์ „ํžˆ ์œ ํšจํ•œ ๊ธฐ์ค€ ์ขŒํ‘œ๊ณ„, ์‹ค์ œ๋กœ ์กด์žฌ X
  2. Local frame
    • Body-fixed frame = Vehicle-fixed frame


Wheeled Robots

img


Kinematics of Wheeled Vehicles

img

x์™€ y์˜ ์ขŒํ‘œ๊ณ„๊ฐ€ ๋’ค์ง‘ํ˜€ ์žˆ๋Š”๋ฐ, ์ด๋™์ฒด๊ฐ€ ๋ฐ”๋€Œ์–ด๋„ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๋ฐ”๊พธ์ง€ ์•Š์•„๋„ ๋จ
์ง€์ƒ ๋นผ๊ณ ๋Š” ์ „๋ถ€ ์ด๋Ÿฐ ํ˜•ํƒœ

Position vector

\[\textbf{r} = x\textbf{i}+y\textbf{j}\]

Velocity vector : ์œ„์˜ ์œ„์น˜ ๋ฒกํ„ฐ๋ฅผ ํŽธ๋ฏธ๋ถ„ ํ•˜๋ฉด ๋จ

\[\frac {d \textbf{r}}{dt} =\dot{x}+x\frac{d\textbf{i}}{dt}+\dot{y}+y\frac{d\textbf{j}}{dt} \\ = \dot{x}\textbf{i}+\dot{y}\textbf{j}\]

๋”ฐ๋ผ์„œ space state term ์œผ๋กœ ๋‚˜ํƒ€๋‚ด๋ฉด,

\[\begin{bmatrix} \dot x\\ \dot y\\ \dot \theta \end{bmatrix} = \begin{bmatrix} Vcos(\theta)\\ Vsin(\theta)\\ w\end{bmatrix} \\\]


img

\[\begin{bmatrix} \dot x\\ \dot y\\ \dot \theta \end{bmatrix} = \begin{bmatrix} Vcos(\theta)\\ Vsin(\theta)\\ w\end{bmatrix}\]


\[\begin{align} V_f=V=V_{fx}=V-fcos(\delta) \\ V_{fy}=rl=V_fsin(\delta) \\ \therefore \frac{(2)}{(1)}=\frac{rl}{V}=\frac{V_fsin(\delta)}{V_fcos(\delta)}= tan(\delta) \\ \therefore r = \frac{V}{l}tan(\delta) \, \end{align}\]


๋”ฐ๋ผ์„œ Minimum tuning radius,\(R_{min}=\frac{l}{tan(\delta_{max})}\)


img

์œ„์˜ ๊ทธ๋ฆผ๊ณผ ๋‹ค๋ฅผ ์ˆ˜ ์žˆ์Œ
์—ฌ๊ธฐ์„œ ๋ฌธ์ œ๋ฅผ ์กฐ๊ธˆ ๋ฐ”๊ฟ”๋ณด์ž
ICC(์ˆœ๊ฐ„๊ณก๋ฅ ์ค‘์‹ฌ)๊ณผ ๋กœ๋ด‡ ์ค‘์‹ฌ ์‚ฌ์ด๋ฅผ R, ์ถ•๊ฐ„ ๊ฑฐ๋ฆฌ๋ฅผ 2a๋กœ notiation ํ•ด๋ณด์ž

\[V = \frac{v_L+v_R}{2}, \\ \,\\ ๋ฒกํ„ฐ์˜\, ์ •๋ฆฌ์— \,๋”ฐ๋ฅด๋ฉด\, \textbf{v}=\textbf{r} \times \textbf{w} \\ v_L=w(R-a) \\ v_R=w(R+a) \\ \therefore w = \frac{v_R-v_L}{2a} \\\]


์—ฌ๊ธฐ์„œ ์žฌ๋ฏธ๋‚œ๊ฑด,

\[\begin{bmatrix} \dot x \\ \dot y \\ \dot \theta \\ \end{bmatrix} = \begin{bmatrix} vcos(\theta) \\ vsin(\theta) \\ w \\ \end{bmatrix} = \begin{bmatrix} cos(\theta) \\ sin(\theta) \\ 1 \\ \end{bmatrix} \begin{bmatrix} v \\ w \\ \end{bmatrix} = \begin{bmatrix} cos(\theta) \\ sin(\theta) \\ 1 \\ \end{bmatrix} \begin{bmatrix} \frac{v_L+v_R}{2} \\ \frac{v_R-v_L}{2a} \\ \end{bmatrix} \\ = \begin{bmatrix} cos(\theta) \\ sin(\theta) \\ 1 \\ \end{bmatrix} \begin{bmatrix} \frac{1}{2} \; \frac{1}{2} \\ -\frac{1}{2a} \; \frac{1}{2a} \\ \end{bmatrix} \begin{bmatrix} v_L \\ v_R \\ \end{bmatrix} \\ = r\begin{bmatrix} cos(\theta) \\ sin(\theta) \\ 1 \\ \end{bmatrix} \begin{bmatrix} \frac{1}{2} \; \frac{1}{2} \\ -\frac{1}{2a} \; \frac{1}{2a} \\ \end{bmatrix} \begin{bmatrix} w_L \\ w_R \\ \end{bmatrix}\]


์ž.. ์šฐ๋ฆฌ๋Š” ํœ  ์—”์ฝ”๋”๋กœ๋ถ€ํ„ฐ ๊ฐ์†๋„ \(w_R \; w_L\)์„ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค
์ด๋ฅผ ํ†ตํ•ด์„œ ์–ด๋– ํ•œ ํ–‰๋ ฌ์„ ๊ณฑํ•˜๋ฉด robot์˜ ์†๋„ ์ •๋ณด์ธ \(\dot{\textbf{X}}\) ๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ์Œ
๋” ๊ฟ€์žผ์ธ๊ฑด ์œ„์˜ ์‹์„ ๊ฐ๋„ ์ธก๋ฉด์—์„œ ํ•œ๋ฒˆ ๋ฐ”๋ผ๋ณด์ž!!
where, \(\Delta t \rightarrow 0 \\\) ์ผ ๋•Œ๊ฐ€ ์กฐ๊ฑด์ž„

\[\begin{bmatrix} \dot x \\ \dot y \\ \dot \theta \\ \end{bmatrix} = r\begin{bmatrix} cos(\theta) \\ sin(\theta) \\ 1 \\ \end{bmatrix} \begin{bmatrix} \frac{1}{2} \; \frac{1}{2} \\ -\frac{1}{2a} \; \frac{1}{2a} \\ \end{bmatrix} \begin{bmatrix} w_L \\ w_R \\ \end{bmatrix}, \\ \begin{bmatrix} \frac{\Delta x}{\Delta t} \\ \frac{\Delta y}{\Delta t} \\ \frac{\Delta \theta}{\Delta t} \\ \end{bmatrix} = r\begin{bmatrix} cos(\theta) \\ sin(\theta) \\ 1 \\ \end{bmatrix} \begin{bmatrix} \frac{1}{2} \; \frac{1}{2} \\ -\frac{1}{2a} \; \frac{1}{2a} \\ \end{bmatrix} \begin{bmatrix} \frac{\Delta \theta_{L}}{\Delta t} \\ \frac{\Delta \theta_{R}}{\Delta t} \\ \end{bmatrix} \\ \, \\ ์–‘๋ณ€์„ \Delta t๋กœ \, ๊ณฑํ•˜๋ฉด? \\ \, \\ \begin{bmatrix} {\Delta x} \\ {\Delta y} \\ {\Delta \theta} \\ \end{bmatrix} = r\begin{bmatrix} cos(\theta) \\ sin(\theta) \\ 1 \\ \end{bmatrix} \begin{bmatrix} \frac{1}{2} \; \frac{1}{2} \\ -\frac{1}{2a} \; \frac{1}{2a} \\ \end{bmatrix} \begin{bmatrix} {\Delta \theta_{L}} \\ {\Delta \theta_{R}} \\ \end{bmatrix}\]

์‹œ๊ฐ„ ๋ณ€ํ™”๋Ÿ‰์ด ์•„์ฃผ ์ž‘์„ ๋•Œ, ์—”์ฝ”๋”์˜ ๋ฏธ์†Œ ๊ฐ๋„๋ณ€ํ™”๋Ÿ‰์œผ๋กœ
3์ฐจ์›์—์„œ state๋ฅผ ์ฐพ์•„๊ฐ€๋Š” ์ ‘๊ทผ๋ฒ• ์กด์žฌ
Jacobian๊ณผ ์—ฐ๊ด€์ด ์žˆ์Œ!