Classification of Vehicles
Vehicle์ ์ข
๋ฅ๋ ์ฌ๋ฌ ๊ฐ๊ฐ ์์๋ค
๋๋ vehicleํ๋ฉด ์๋์ฐจ์ธ์ค ์์์ง๋ง.. ใ
ใ
Vehicle
์ ์ข
๋ฅ
- Ground Vehicles
- Legged : 4์กฑ ๋ณดํ๋ก๋ด ๋ฑ
- Wheeled : ํฐํ๋ด, ๋ก์ค๋ด, ์์นผ ๋ฑ
- Aerial Vehicles
- Fixed-wing : ๊ณ ์ ์
- Rotary-wing : ํ์ ์
- Marine(Ocean) Vehicles
- Surface(floating)
- Underwater
Robot Locomotion
์ ์: ๋ชจ๋ฐ์ผ ๋ก๋ด์ด ํ ์ฅ์์์ ๋ค๋ฅธ ์ฅ์๋ก ์์ง์ด๊ธฐ ์ํด์ ์ฌ์ฉ๋์ด์ง๋ Mechanism ์ด๋ Method๋ฅผ ๋ปํจ
Bio-inspired locomotion
: walking, jumping, running, swimming, flying
Motion์ ๋ํ ๊ธฐ๋ณธ Concepts
Kinematics
: motion(ํ, ๊ฐ์๋)์ ํํ์ ์ ์ธํ ์ํ์ ์ธ ํํ
Kinetics
: motion(ํ, ๊ฐ์๋)๋ฅผ ๊ณ ๋ คํ ๊ด๊ณ
Dynamics
: Kinematics + Kinetics
Motion์ ์ด๋ป๊ฒ ์ ์ํ๋๊ฐ?
object์ motion์ ์ ๋ํํ๊ธฐ ์ํด์๋ Reference frame
์ด๋ ๊ฒ์ด ํ์!
reference frame์ด๋ origin
๋๋ coordinate system
์ผ๋ก๋ถํฐ ์ ์๋จ
Coordinate Systems
3๊ฐ์ง๊ฐ ์กด์ฌ
- ์ง๊ต์ขํ๊ณ(Cartesian=Rectangular) w.r.t. \(x,y,z\)
- ์ํต์ขํ๊ณ(Cylinderical=polar) w.r.t. \(r,\theta,z\)
- ๊ตฌํ์ขํ๊ณ(Spherical) w.r.t. \(r,\theta,\phi\)
Global & Local frame
- Global frame
- Earth-centered inertial frame(=inertial frame)
- ECI frame, ์ง๊ตฌ ์ง๋ ์ค์ฌ์ด ์์ ๊ด์ฑ ๊ณต๊ฐ์์ ํ์ X
- ๋ดํด์ ๋ฒ์น์ด ์์ ํ ์ ํจํ ๊ธฐ์ค ์ขํ๊ณ, ์ค์ ๋ก ์กด์ฌ X
- Local frame
- Body-fixed frame = Vehicle-fixed frame
Wheeled Robots
- Unicycle : ํ๋ฐ์์ ๊ฑฐ ๊ฐ์ ๊ฑฐ
- Steered wheels :
Defferential drive
- ๋๋ถ๋ถ์ ๋ชจ๋ฐ์ผ ๋ก๋ด์ ์ด๋ ๊ฒ ๊ตฌ์ฑ
- Omnidirectional
- Tracked locomotion
- Walking wheels
Kinematics of Wheeled Vehicles
x์ y์ ์ขํ๊ณ๊ฐ ๋ค์งํ ์๋๋ฐ, ์ด๋์ฒด๊ฐ ๋ฐ๋์ด๋ ์๊ณ ๋ฆฌ์ฆ์ ๋ฐ๊พธ์ง ์์๋ ๋จ
์ง์ ๋นผ๊ณ ๋ ์ ๋ถ ์ด๋ฐ ํํ
Position vector
\[\textbf{r} = x\textbf{i}+y\textbf{j}\]
Velocity vector
: ์์ ์์น ๋ฒกํฐ๋ฅผ ํธ๋ฏธ๋ถ ํ๋ฉด ๋จ
\[\frac {d \textbf{r}}{dt} =\dot{x}+x\frac{d\textbf{i}}{dt}+\dot{y}+y\frac{d\textbf{j}}{dt} \\ = \dot{x}\textbf{i}+\dot{y}\textbf{j}\]
๋ฐ๋ผ์ space state term
์ผ๋ก ๋ํ๋ด๋ฉด,
\[\begin{bmatrix}
\dot x\\
\dot y\\
\dot \theta
\end{bmatrix} = \begin{bmatrix} Vcos(\theta)\\ Vsin(\theta)\\ w\end{bmatrix} \\\]
\[\begin{bmatrix}
\dot x\\
\dot y\\
\dot \theta
\end{bmatrix} = \begin{bmatrix} Vcos(\theta)\\ Vsin(\theta)\\ w\end{bmatrix}\]
\[\begin{align}
V_f=V=V_{fx}=V-fcos(\delta) \\
V_{fy}=rl=V_fsin(\delta) \\
\therefore \frac{(2)}{(1)}=\frac{rl}{V}=\frac{V_fsin(\delta)}{V_fcos(\delta)}= tan(\delta) \\
\therefore r = \frac{V}{l}tan(\delta) \,
\end{align}\]
๋ฐ๋ผ์ Minimum tuning radius
,\(R_{min}=\frac{l}{tan(\delta_{max})}\)
์์ ๊ทธ๋ฆผ๊ณผ ๋ค๋ฅผ ์ ์์
์ฌ๊ธฐ์ ๋ฌธ์ ๋ฅผ ์กฐ๊ธ ๋ฐ๊ฟ๋ณด์
ICC(์๊ฐ๊ณก๋ฅ ์ค์ฌ)๊ณผ ๋ก๋ด ์ค์ฌ ์ฌ์ด๋ฅผ R
, ์ถ๊ฐ ๊ฑฐ๋ฆฌ๋ฅผ 2a
๋ก notiation ํด๋ณด์
\[V = \frac{v_L+v_R}{2}, \\ \,\\
๋ฒกํฐ์\, ์ ๋ฆฌ์ \,๋ฐ๋ฅด๋ฉด\, \textbf{v}=\textbf{r} \times \textbf{w} \\
v_L=w(R-a) \\
v_R=w(R+a) \\
\therefore w = \frac{v_R-v_L}{2a} \\\]
์ฌ๊ธฐ์ ์ฌ๋ฏธ๋๊ฑด,
\[\begin{bmatrix}
\dot x \\ \dot y \\ \dot \theta \\
\end{bmatrix} =
\begin{bmatrix}
vcos(\theta) \\ vsin(\theta) \\ w \\
\end{bmatrix} =
\begin{bmatrix}
cos(\theta) \\ sin(\theta) \\ 1 \\
\end{bmatrix}
\begin{bmatrix}
v \\ w \\
\end{bmatrix} =
\begin{bmatrix}
cos(\theta) \\ sin(\theta) \\ 1 \\
\end{bmatrix}
\begin{bmatrix}
\frac{v_L+v_R}{2} \\ \frac{v_R-v_L}{2a} \\
\end{bmatrix} \\ =
\begin{bmatrix}
cos(\theta) \\ sin(\theta) \\ 1 \\
\end{bmatrix}
\begin{bmatrix}
\frac{1}{2} \; \frac{1}{2} \\ -\frac{1}{2a} \; \frac{1}{2a} \\
\end{bmatrix}
\begin{bmatrix}
v_L \\ v_R \\
\end{bmatrix} \\ =
r\begin{bmatrix}
cos(\theta) \\ sin(\theta) \\ 1 \\
\end{bmatrix}
\begin{bmatrix}
\frac{1}{2} \; \frac{1}{2} \\ -\frac{1}{2a} \; \frac{1}{2a} \\
\end{bmatrix}
\begin{bmatrix}
w_L \\ w_R \\
\end{bmatrix}\]
์.. ์ฐ๋ฆฌ๋ ํ ์์ฝ๋
๋ก๋ถํฐ ๊ฐ์๋ \(w_R \; w_L\)์ ์ป์ ์ ์๋ค
์ด๋ฅผ ํตํด์ ์ด๋ ํ ํ๋ ฌ์ ๊ณฑํ๋ฉด robot์ ์๋ ์ ๋ณด์ธ \(\dot{\textbf{X}}\) ๋ฅผ ์ป์ ์ ์์
๋ ๊ฟ์ผ์ธ๊ฑด ์์ ์์ ๊ฐ๋ ์ธก๋ฉด์์ ํ๋ฒ ๋ฐ๋ผ๋ณด์!!
where, \(\Delta t \rightarrow 0 \\\) ์ผ ๋๊ฐ ์กฐ๊ฑด์
\[\begin{bmatrix}
\dot x \\ \dot y \\ \dot \theta \\
\end{bmatrix} =
r\begin{bmatrix}
cos(\theta) \\ sin(\theta) \\ 1 \\
\end{bmatrix}
\begin{bmatrix}
\frac{1}{2} \; \frac{1}{2} \\ -\frac{1}{2a} \; \frac{1}{2a} \\
\end{bmatrix}
\begin{bmatrix}
w_L \\ w_R \\
\end{bmatrix}, \\
\begin{bmatrix}
\frac{\Delta x}{\Delta t} \\ \frac{\Delta y}{\Delta t} \\ \frac{\Delta \theta}{\Delta t} \\
\end{bmatrix} =
r\begin{bmatrix}
cos(\theta) \\ sin(\theta) \\ 1 \\
\end{bmatrix}
\begin{bmatrix}
\frac{1}{2} \; \frac{1}{2} \\ -\frac{1}{2a} \; \frac{1}{2a} \\
\end{bmatrix}
\begin{bmatrix}
\frac{\Delta \theta_{L}}{\Delta t} \\ \frac{\Delta \theta_{R}}{\Delta t} \\
\end{bmatrix} \\ \,
\\ ์๋ณ์ \Delta t๋ก \, ๊ณฑํ๋ฉด? \\ \,
\\
\begin{bmatrix}
{\Delta x} \\ {\Delta y} \\ {\Delta \theta} \\
\end{bmatrix} =
r\begin{bmatrix}
cos(\theta) \\ sin(\theta) \\ 1 \\
\end{bmatrix}
\begin{bmatrix}
\frac{1}{2} \; \frac{1}{2} \\ -\frac{1}{2a} \; \frac{1}{2a} \\
\end{bmatrix}
\begin{bmatrix}
{\Delta \theta_{L}} \\ {\Delta \theta_{R}} \\
\end{bmatrix}\]
์๊ฐ ๋ณํ๋์ด ์์ฃผ ์์ ๋, ์์ฝ๋์ ๋ฏธ์ ๊ฐ๋๋ณํ๋์ผ๋ก
3์ฐจ์์์ state๋ฅผ ์ฐพ์๊ฐ๋ ์ ๊ทผ๋ฒ ์กด์ฌ
Jacobian
๊ณผ ์ฐ๊ด์ด ์์!